
Contents

1 Installation 3
1.1 Requirements . 3

1.1.1 Operating System . 3

1.1.2 System Libraries . 3

1.2 Quick Install . 3

1.3 Complete control of Building . 3

1.4 Complete control of Installation . 5

2 Usage 5
2.1 Synopsis . 5

2.2 Live Capture vs Trace Analysis . 7

2.3 More Control . 9

3 Output 9
3.1 Histograms . 11

3.2 RRD . 13

3.3 Logs . 13

3.4 Packet Level Traces . 13

3.5 Post Processing . 14

3.6 Storage Considerations . 14

4 RRD Module 15
4.1 RRDtool Installation . 15

4.2 RRD Configuration . 15

4.3 Tstat RRD and the Web . 16

4.3.1 Database Structure . 16

4.3.2 Web Configuration . 17

5 Runtime Module 17

6 DPMI Module 19
6.1 Tstat Configuration for DPMI . 19

6.2 DPMI Configuration for Tstat . 20

7 Bayesian Classification of Skype Traffic 20

8 Libtstat library 22
8.1 Link the Libtstat library . 23

8.2 Libtstat API . 23

1

9 Author Informations 25

10 Acknowledgment 25

11 License 25

2

1 Installation

This document provides basic information for the installation, configuration and usage of
Tstat and the Bayesian framework for Skype traffic identification. A more general descrip-
tion of the program as well as other documentation can be found in the Tstat homepage
http://tstat.tlc.polito.it

1.1 Requirements

1.1.1 Operating System

Tstat has been tested testedon Linux 2.2.x, 2.4.x and 2.6.x kernels, using RedHat 6.x-9.x,
and Fedora Core x systems. It should work under other UNIX dialects, such as FreeBSD,
NetBSD 1.3 and MAC OS X (although we do not have any of those platforms for testing pur-
poses). If you able to run Tstat on other OSs, we will be happy to include them in the list.

1.1.2 System Libraries

Tstat requires, by itself, a few library that should already be installed on your system, such
as libpcap (available from http://www.tcpdump.org) and the DAG drivers (available from
http://www.endace.com), in case you use such hardware. With these libraries, you are ready
to capture and process the traffic flowing in your LAN.
Since Tstat uses pthread to improve the performance in case of real time analysis, your

system must support POSIX threads as well if you want to profit of this feature. However,
keep in mind that threaded execution is only an optional feature, and is necessary only for
online traffic analysis, so that this is not a strict requirement: for this reason, threading is
disabled by default.
Finally, to use the RRD functionalities, you also need to have a working installation of

RRDtool (available from http://oss.oetiker.ch/rrdtool/).

1.2 Quick Install

Assuming that you want version 2.x.y:

wget http://tstat.polito.it/download/tstat-2.x.y.tar.gz

tar -xzvf tstat-2.x.y.tar.gz

cd tstat-2.x.y

./autogen.sh

./configure [--enable-libtstat]

make

make install (with root privileges)

This commands install a executable file named tstat in /usr/local/bin.

1.3 Complete control of Building

The most important elements in the Tstat’s package are:

3

tstat/

tstat-conf/

libtstat/

include/

libtstat-demo/

doc/

doc/HOWTO

README AUTHORS NEWS INSTALL ChangeLog

The tstat directory contains the source code of Tstat which is also the default building
target. Beside Tstat it can also be compiled the Libtstat, a shared library which allows
to an external program to access to the traffic analysis functions of Tstat. In the include
directory there is the header file of the library instead in the libtstat-demo directory there
is a simple program of example that shows how to use the Libtstat (see Libtstat library for
more information about the Libtstat API).
The building of the Libtstat library is disabled by default but is provided a configuration

option to control this feature

./configure --enable-libtstat # build tstat, libtstat and libtstat-demo

./configure # build only tstat

At the end of configure is printed a small report:

tstat Version 2.1

-lrrd -lpcap -lpthread -lm

Prefix: ’/usr/local’

Package features:

- pcap yes

- rrd yes

- libtstat no

This indicate if the libtstat has been selected or not for the building and if it was found the
Librrd in the system in which case is automatically added in building of the project.
Tstat’s source code uses some preprocess definition to enable/disable some features, like

for example the DAG support which is disabled by default. These definitions are declared in
the tstat/Makefile.conf each with a specific description about its purpose so it should be
easy change to behaviour in the building process commenting/uncommenting some lines.

NB: remember to run autoreconf from the root of the package every time a change in
these file is performed!!!

The building of Libtstat is separated from the building of Tstat so libtstat/Makefile.conf
file defines the set of option specific for the Libtstat, while tstat/Makefile.conf is specific
for Tstat.

4

In the directory tstat-conf there are some examples of configuration files needed by
Tstat; for example the set of local addresses (-N option), the configuration of the histograms
(-H), RRD tool (-R), runtime (-T) and bayesian framework (-B).
In the directory doc there are some plain text files that describes the format of logs files

generated by the analysis and in doc/HOWTO there is howto document in different file formats.
README, AUTHORS, INSTALL, NEWS and ChangeLog instead are plain files that describes some
general information about the package like the authors, the last new features of the tools,
etc...

1.4 Complete control of Installation

The default prefix for installation is /usr/local so Tstat executable in installed in /usr/local/bin
and Libtstat is installed in /usr/local/lib. Anyway a different prefix can be specified at
configuration time

./configure --prefix=/absolute/path/where/install/tstat

Libtstat-demo is only a demonstration tool so is build only a local executable that is not
installed.
Libtstat is providedwith pkg-config support so a libtstat.pc is installed in /usr/lib/pkg-config

and typing

pkg-config --cflags --libs libtstat

it should appears an output like

-I/usr/local/include -L/usr/local/lib -lm -lpthread -lpcap -lrrd

that indicates the CFLAGS and LIBS options used in the building process.

2 Usage

There are few things to know to run Tstat: first, you are required to have a knowledge of the
network that you want to monitor. Second, there are the few options that are described in
this section.

2.1 Synopsis

Tstat primary usage is as a command-line tool; the synopsis of the command is the following:

Usage:

tstat [-htuvwpgSL] [-d[-d]]

[-s dir]

[-N file]

[-B bayes.conf]

[-T runtime.conf]

[-z file]

[-H ?|file]

[-r RRD_out_dir] [-R rrd_conf]

[-l] [-i interface]

[-f filterfile]

<file1 file2>

5

Options:

-h: print this help and exit

-t: print ticks showing the trace analysis progress

-u: do not trace UDP packets

-v: print version and exit

-w: print [lots] of warning

-c: concatenate the finput files

(input files should already be in the correct order)

-p: enable multi-threaded engine (useful for live capture)

-d: increase debug level (repeat to increase debug level)

-s dir: puts the trace analysis results into directory

tree dir (otherwise will be <file>.out)

-N file: specify the file name which contains the

description of the internal networks.

This file must contain the subnets that will be

considered as ’internal’ during the analysis.

Each subnet can be specified in one of the following types:

- <Network IP/NetMask> on a single line

130.192.0.0/255.255.0.0

- <Network IP/MaskLen> on a single line

130.192.0.0/16

- Pairs of lines with <Network IP> and <NetMask>

130.192.0.0

255.255.0.0

If the option is not specified all networks are

considered internal

-H ?: print internal histograms names and definitions

-H file: Read histogram configuration from file

file describes which histograms tstat should collect

’include histo_name’ includes a single histogram

’include_matching string’ includes all histograms

whose name includes the string

special names are:

’ALL’ to include all histograms

’ADX’ to include address hits histogram

for example, to include all TCP related

and the address hits histograms, file should be:

include ADX

include_matching tcp

’adx_mask N’ is a special command to define the

size of the netmask used to aggregate the address histograms

(e.g. ’adx_mask 24’ to use the 255.255.255.0 mask)

-g: Enable global histo engine

-S: No histo engine: do not create histograms files

-L: No log engine: do not create log_* files

-1: Use old (v1) log_mm format

-B Bayes_Dir: enable Bayesian traffic classification

configuration files from Bayes_Dir

-T runtime.conf: configuration file to enable/disable dumping

6

of traces and logs at runtime

-z file: redirect all the stdout/stderr messages to the file specified

-R conf: specify the configuration file for integration with

RRDtool. See README.RRDtool for further information

-r path: path to use to create/update the RRDtool database

-l: enable live capture using libpcap

-i interface: specifies the interface to be used to capture traffic

-f filterfile: specifies the libpcap filter file. Syntax as in tcpdump

file: trace file to be analyzed

Use ’stdin’ to read from standard input.

Note:

When tstat is called with no arguments (on the command line),

it will first check if a file <tstat.conf> is provided in the

same directory where the execution started.

In the latter case, arguments will be read from <tstat.conf>

rather than from the command line

Supported Input File Formats:

tcpdump tcpdump format -- Public domain program from LBL

snoop Sun Snoop format -- Distributed with Solaris

etherpeek etherpeek format -- Mac sniffer program

netmetrix Net Metrix format -- Commercial program from HP

ns ns format - Network simulator ns2 from LBL

netscout NetScout Manager format

erf Endace Extensible Record format

tcpdump live Live capture using pcap/tcpdump library

2.2 Live Capture vs Trace Analysis

Tstat can sniff and analyze traffic on-line through the use of either the libpcap library or
Endace DAG cards. The use of Tstat is very easy, especially if you have experiences with
tcpdump, although tcpdump’s knowledge is not required to profitably use Tstat. Moreover,
advanced users will enjoy the ability of on-line processing of traffic captured with DAG
cards.
As aminimal configuration, youmust describe your network to Tstat. Indeed, in order to

distinguish forward and backward paths, Tstat needs to know which host IP addresses can
be considered as “internal” to the monitored network. There are three different format to
specify the internal subnets and if, for example, we use Politecnico di Torino subnets, which
are 130.192.0.0/16 and 193.204.134.0/24, we can choose to use one of the following for-
mats:

<Network IP/NetMask> on a single line

130.192.0.0/255.255.0.0

192.204.134.0/255.255.0.0

<Network IP/MaskLen> on a single line

7

130.192.0.0/16

192.204.134.0/16

(only for backward compatibility) pairs of lineswith<Network IP> and<NetMask>

130.192.0.0

255.255.0.0

192.204.134.0

255.255.0.0

Note that formats can be mixed in the configuration file and comment lines can be spec-
ified using ’#’ so using following configuration is still correct

this is a comment

130.192.0.0/24

192.204.134.0/255.255.0.0

192.168.0.0

255.255.0.0

In the directory tstat-conf are placed the two files net.all and net.private

>cat tstat-conf/net.all

Mask to indicate that all IP subnets are supposed to be internal

The same result is obtained omitting the -N option

0.0.0.0/0.0.0.0

>cat tstat-conf/net.private

Example mask to consider as internal all the subnets in the

198.168. private addresses range

192.168.0.0/16

that can be useful for generic elaborations. In any case, if the -N option is not specified all
networks are considered internal.
We can now run Tstat to capture the traffic flowing across our network, with the follow-

ing command, which must be run as root (as you need to capture packets by putting the
Ethernet interface in promiscuous mode). The simplest command is the following:

./tstat -l -N net.conf

Beside live-capture, it is possible to run Tstat on a previously collected trace file, where the
trace format can be any of the following:

Supported Input File Formats:

tcpdump tcpdump -- Public domain program from LBL

snoop Sun Snoop -- Distributed with Solaris

etherpeek etherpeek -- Mac sniffer program

netmetrix Net Metrix -- Commercial program from HP

ns ns -- network simulator from LBL

netscout NetScout Manager format

erf Endace Extensible Record Format

DPMI Distributed Passive Measurement Interface (DPMI) format

tcpdump live Live capture using pcap/tcpdump library

8

Tstat will try to read trace files given as input, and to automatically identify the correct dump
format. Trace files can be compressed or uncompressed, and Tstat will automatically detect
the compression tool used (supported formats are compress, gzip, bzip2, 7z).
Without loss of generality, we assume to use the first of the above formats. The calling

syntax is similar to the previous one, with the exception of the absence of the live-capture
switch -l and the presence of the name(s) of the file(s) that have to be processed. For exam-
ple, the following command can be used to analyze a trace file named LAN.dump.gz. Results
of the analysis will be stored in a subdirectory named trace1; as before, net.conf contains
the subnet description that will be considered as “internal” during the analysis.

./tstat -s trace1 -N net.conf LAN.dump.gz

2.3 More Control

We can control the interface that we want to sniff from as well as the output directory name
as follows:

./tstat -i eth1 -l -s test -Nnet.conf

Moreover, we can also pipe Tstat input using the special keyword stdin as input, as in the
following command (piping ns2 output to Tstat is left as an exercise for the reader):

tcpdump -s 80 -i eth0 -w - ip | ./tstat -Nnet.conf -spiped stdin

In this case, Tstat is fed by tcpdump’s output, and the latter has been instructed to capture
packets on the eth0 device, collecting the first 80 bytes (to track uniquely packet headers)
of IP packets only, and send the output to stdout. Moreover, since Tstat understands the
libpcap syntax, filters can be stored in text files, as in the following command sequence:

echo "vlan and ip and host 10.0.0.1" > tcpdump.conf

./tstat -i eth0 -l -f tcpdump.conf -N net.conf -s filtered

3 Output

Tstat collects several network-layer as well as transport-layer measurements, which are de-
scribed in full details in http://tstat.polito.it/measure.shtml. As output, Tstat produces four
different types of files: histograms, round robin database, packet level traces and other plain
text logs.
By default Tstat collect all the output results in a directory with the same name of the

input trace appending the suffix .out or stding in case of a live capture:

./tstat -N net.conf trace1.pcap trace2.pcap # output dir: trace1.pcap.out, trace2.pcap.out

./tstat -N net.conf -li eth0 # output dir: generate stdin

./tstat -N net.conf -s trace1 trace1.pcap # output dir: trace1

In any case, inside the output directory is generated a subdirectory named with the times-
tamp of the first packet analyzed and inside this directory the files generated are organized
as follow:

9

<output_root>

‘-- 23_00_28_Jun_2008.out

|-- 000

| ‘--- histo_logs

|-- 001

| ‘--- histo_logs

...

|-- LAST

| ‘--- histo_logs

|

|-- traces00

| ‘--- dump_traces

|-- traces01

| ‘--- dump_traces

...

‘-- other_logs

This means that the RRD output files are not collected inside the output directory, in fact
there is a specific command line option (-r) to indicate where this results have to be placed.
Recall that Tstat assumes that traces are collected on a bidirectional link, such that both

data and control packets belonging to the same flow are observed; with the help of the fig-
ures below, we will explain the different classification of measurements used by Tstat.

Tstat identifies hosts based on their IP address. Given the description of the internal hosts
through the -N command line option, Tstat distinguishes among incoming, outgoing and local
measurements. Packets whose destination is an internal host andwhose source is an external
host will contribute to incomingmeasurements (red arrow in the top figure), whereas packets

10

going in the opposite direction will contribute to outgoingmeasurements (green arrow in the
top figure). Finally, in some cases it is possible that Tstat observes packets whose source and
destination host belong to the internal host set: in such cases, measurementswill be classified
as local (blue arrow in the top figure). Notice that packets whose source and destination IP
addresses belong to the external host set will be discarded. For example, consider a setup in
which Tstat is attached to a snoop port of a LAN switch. Then Tstat will be fed by i) outgoing
packets going to the default gateway, ii) incoming packets coming from the default gateway,
iii) local packets.
Note that if you either do not know or do not want to distinguish between internal,

external and local hosts, you may enable the -DLOG UNKNOWN (in tstat/Makefile.conf or
libtstat/Makefile.conf) directive when compiling. Tstat will then be less strict, but re-
sults may be difficult to be correctly interpreted.
Considering instead the role of the host that sent the packet, statistic are collected dis-

tinguishing between clients (green arrow in the bottom figure) and servers (red arrow in the
top figure), i.e., host that opens a connection and and host that replies to connection request.
Recall that while TCP connections are well defined, UDP (and RTP/RTCP) connection defi-
nition is more fuzzy. In this latter case, Tstat will consider as client the source IP address of
the host that sent the first packet of that flow, while the server will be the host identified by
the destination IP address of the same packet.
Therefore, when applicable, Tstat will keep track of measurements referring to the same

measured quantity by appending a specific tag (see Sec. 3.1) or using a flag (see Logs).

3.1 Histograms

Histograms are generated periodically to generate the distribution of a given quantity within
a time interval. Tstat collects all the measurement data during a given measurement interval
defined by the MAX TIME STEP parameter, which is hard-coded in the tstat/param.h file to
5 minutes. Please, note that changing the MAX TIME STEP parameter may affect RRD creation
as well. For example, considering the IP packet length, Tstat updates, for each observed IP
packet, the counter of the number of observed packets with a particular length. At the end
of the measurement period, Tstat then saves the values stored in the histogram in a subdi-
rectory named with a incrementally counter of three digits, resets all the internal values, and
then restarts the samples collection.
To separate statistics respecting the verse (input, output or local) and the role of a peer in

the communications, is appended a tag to files generated:

out

outgoing: from an internal host to an external host

in

incoming: from an external host to an internal host

loc

local between two internal hosts

c2s

going from the Client to the Server

11

s2c

going from the Server to the Client

Considering the last example of previous section, we run:

./tstat -s trace1 -N net.conf 23_00_28_Jun_2008.dump.gz

The output generated by Tstat consists of a directory tree like the following:

trace1

‘-- 23_00_28_Jun_2008.out

|-- 000

| |-- addresses<tag>

| |-- flow_number<tag>

| |-- ip_len_in<tag>

| ...

| |-- udp_port_flow_dst<tag>

| ‘-- udp_tot_time<tag>

|-- 001

| |-- addresses<tag>

| |-- flow_number<tag>

| |-- ip_len_in<tag>

| ...

| |-- udp_port_flow_dst<tag>

| ‘-- udp_tot_time<tag>

...

|-- LAST

| |-- addresses<tag>

| |-- flow_number<tag>

| |-- ip_len_in<tag>

| ...

| |-- udp_port_flow_dst<tag>

‘-- udp_tot_time<tag>

Subdirectories with increasing numbers will be created for each measurement period with
the format nnn/; histograms collecting measurement results will be created in these direc-
tories; note that the histograms referring to the last partial time period will be stored in the
LAST subdirectory. The option -g adds also the subdirectory GLOBAL containing the global
histograms for the whole measurement period.
The -H has to be used to enable the histogram engine, specifying a configuration file of

? to have a complete list of the available histograms. The syntax of the configuration file is
really simple:

include ALL # add all histograms

include ADX # histogram to count how many times ip address are used

adx_mask 16 # define the size of the netmask for the ADX histogram

include ip_len_in # histogram of the ip packet length of the input traffic

include_matching ip_ # match all the histograms which name start with ’ip_’

12

Histogram data are saved using simple ASCII files: the first line contains a description of the
measured quantity, while the second line contains the parameters of the histograms (mini-
mum and maximum values, and size of each bins). The list of all the counter index and val-
ues is then dumped. To limit the file size, the corresponding entry is omitted if the counter
is zero. For example, the histogram of the packet length ip len in looks like:

#IP packet length - incoming packets

#min=0 bin_size=4 max=1600

28 7

36 277

40 11760

44 3463

...

Simple Post Processing tools are available to automatically manage the histogram database.

3.2 RRD

The RRD output consists of a series of binary files stored in the RRD format. Tstat forces a
particular naming notation of such files, which follows the configuration rules described later
in Sec. 4.2.
The RRD can then be queried with the standard RRDtool commands, such as rrdcreate,

rrdupdate, rrdgraph, rrddump, rrdfetch, rrdtune, rrdlast, rrdxport, to whose
manual pages we refer the reader for further informations.

3.3 Logs

Tstat creates three transport-layer log-files: log tcp complete, log tcp nocomplete and log udp complete.
Log files are placed in the main database directory. TCP flows can be either completed or
not depending whether Tstat observed the 3-way handshaking or not; in the first case, all
the measured indexes relatively to each flow will be collected in the log tcp complete; in
the latter case, flows are considered as garbage and stored in log tcp nocomplete; Simi-
larly, a complete log keeping track of each UDP flow measured indexes is maintained in the
log udp complete file. Being UDP basically a connectionless protocol, it is impossible to
distinguish among complete and nocomplete flows in this case.
Furthermore the following log files are created: log mm complete for multimedia flows

(i.e. RTP, RTCP, etc), log chat complete for IMprotocols (i.e. MSN, Jabber, etc) and log skype complete

for Skype traffic.
Description of the file format of each log file can be found in http://tstat.polito.it/measure.shtml.

3.4 Packet Level Traces

Inside Tstat there is a Deep Packet Inspector - DPI which is able to identify traffic com-
munications at application level looking the composition of the payload of packets.
This feature is controlled by the Runtime module and the output files are placed in sub-

directories named tracesNN where NN is an counter incremented every time the runtime
configuration is changed. In any case, for each configuration, the input traffic in is splitted
in traces with windows of 1 hour, that is, for example, if we start the dump at 9:00 am

13

traces00/udp_complete.pcap0 #all the udp traffic from 9:00 to 10:00

traces00/udp_complete.pcap1 #all the udp traffic from 10:00 to 11:00

...

All the traces are in pcap format and, because of the level 2 headers are in general useless
for statistic purpose, each packet dumped is composed of a bogus Ethernet header (contains
only zeros expect for the type field which is IP) followed by the original packet starting from
IP header. The input packets can also be trunkated after a specific amount of bytes which
can be configured using the snap len specific option in the configuration file.

3.5 Post Processing

This section could be a separate HOWTO, since this argument cannot be treated exhaus-
tively. Perl, Awk, Ruby Your-Favorite-Scripting-Language scripts are definitively best candi-
dates to post-process log * files.
In the Tstat download page and in the source archive, you can find plot time.pl and

plot cum.pl, two Perl scripts that may be useful to produce either i) time or ii) aggregated
plots over different time spans. They directly access the histogram database created by Tstat.
Please, refer to http://tstat.polito.it/software.php#postprocess.
In the source code, in scripts/MySQL/, you can also find a few Perl scripts to load the

main log * files in a simple MySQL database, for further post-processing.
RRD files can be manipulated to obtain indirect metrics through the RPN manipulations

mechanism provided by RRDtool.

3.6 Storage Considerations

To give the user a rough idea of the size of the output, let us consider a 6 hours long, 1.6GB
packet-level trace containing 21M packets, sniffed with tcpdump that was used throughout
this tutorial. Tstat identified and analyzed about 729K flows, of which about 495K were TCP
flows, trashing 20K of them into log nocomplete. Referring to the Sec. 3 above shown, we
can express the following observations:

Histogram

As previously described, in order to take into account the flow directions, several his-
tograms are dumped for the same variable var {in,out,loc,c2s,s2c}. Currently,
about 60 measurement indexes, described in http://tstat.tlc.polito.it/measure.shtml, are
logged, for a total of 180 files. Each of the 000/, 001/ ... LAST/ directories is about
500KB-1MB depending on the network traffic and on the file system block allocation
mechanism.

Therefore, as a rule of thumb, you can count about 1MB of storage due to histograms
every 5 minutes of traffic (independently of the amount of actual traffic load during
the 5 mins...). This can be useful in order to set the periodic dump timer to the desired
trade off among time granularity versus storage size required.

RRD

The rrd/ directory is, per construction, of fixed size: this should not be a surprise,
since this is the goal of RRD. Therefore, the size of the database does not depend on

14

the amount of network traffic processed, but rather on the RRD configuration. For
the standard configuration supplied with Tstat, which is also the one used in our Web
server, the whole database occupy only 6MB and consists of about 250 files.

Logs

The total size of the log files amount to about 200MB, which gives a 8x reduction factor
w.r.t. the packet-level trace; or, the storage cost of each flow is about 400 bytes.

Note that the log * can be further compressed, using gzip to less than 50MB, which
gives a further 4x size gain; however, for a matter of performance, is preferable to
compress the log files offline.

Finally, consider that on a common PC architecture (specifically, Intel P4 2.40GHz equipped
with 2GB of RAM and 7200rpm hard-disk), the whole trace elaboration took only 4 minutes;
thus, the analysis rate is roughly 85Kpkts/sec or 3Kflows/sec.

4 RRD Module

4.1 RRDtool Installation

In order to get Tstat RRDmodule working, you will need to install RRDtool first (refer to the
homepage of RRDtool http://oss.oetiker.ch/rrdtool/ to accomplish this step). The autoconf
file configure of Tstat then should automatically add the RRD support if it find one (see
Sec. 1.3).

4.2 RRD Configuration

Tstat RRD configuration is very easy, being centralized in a single text-file, which allows
to specify at runtime what measurements should be monitored. The operating frequencies
for the RRD sampling (i.e., the parameters for the temporal averages) are hard-coded into
rrdtool.h and are chosen to mimic MRTG behavior. Again, take care that modifying the
MAX TIME STEP parameter may affect the RRD management as well.
The RRD configuration file, specified through the command line option -R, should con-

tain one line for each of the Tstat parameters that have to be integrated into a Round Robin
Database. Each line allows to specify which statistical properties of the variable has to be
tracked, as follows:

tstat_var1 avg min max stdev var idx:e,f,g,h,other prc:i,j,k

where avg,min,max,stdev,var,idx,prc,other are keywords, whereas i,j,k are floating
point numbers and e,f,g,h integer values; note that the list of indexes (e.g., TCP ports),
values (e.g., packet size) and percentiles are comma separated. The name of the variables
are Tstat internal ones: they can be seen by executing ./tstat -H, Alternatively, you can
directly look into the 000/ ... LAST/ directories or or at http://tstat.polito.it/measure.shtml
Valid configuration lines are, e.g.:

#

inspect IP packet length average, specific values and distribution

#

ip_len_in avg prc:50,90,95,99 idx:40,1500,other

15

#

TCP well known ports

#

20 FTP-DATA

21 FTP

22 SSH

23 telnet

25 SMTP

80 HTTP

...

#

tcp_port_dst_in idx:20,21,22,23,25,80,other

#

good approximation of the distribution of the RTT,

taking into account only the incoming path contribution

#

tcp_rtt_avg_in prc:0.1,1,5,10,25,50,75,90,95,99,99.9

where, evidently, the lines starting with a # sign are treated as comments. Our Web server is
currently running with the configuration available at http://tstat.polito.it/download/rrd.conf.
For each specified quantity defined in the rrd.conf file, a corresponding file will be cre-

ated. For example, consider that the generic configuration line:

tstat_var avg min max stdev var idx:e,f,g,h,other prc:i,j,k

will produce the following files (13 in total):

tstat_var.{avg,min,max,stdev,var}.rrd

tstat_var.idx{e,f,g,h,oth}.rrd

tstat_var.prc{i,j,k}.rrd

4.3 Tstat RRD and the Web

From the Tstat web site, you can download the most up-to-date version of tstat rrd.cgi,
which is the CGI script that renders the Web interface. Here is some basic tips to get it
working; if you wonder how to write your own graph templates, then you are probably
skilled enough to get it on your own :)

4.3.1 Database Structure

The CGI scripts allow to browse on the fly the RRD database structure. The rrd data di-
rectory is the root of the tree, where each directory contains either i) other directories (i.e.,
is a box) or ii) a RRD-database, in which case the node is a leaf and will be shown in the
interface. In case that a directory is a plain box, it may optionally contain some files (specif-
ically {HEADER,FOOTER,README}.{html,txt}) that will be rendered by tstat rrd.cgi. By de-
fault, the cgi script tries to load the html version; otherwise, it tries to displays ”<pre> ‘cat
FILE‘ </pre>” if such a FILE exists; finally, it will display a default message held in $de-
fault{README} hard coded in the script.
Here is an example of the rrd data directory which holds part of the RRD database ac-

cessible from the Tstat web page.

16

rrd_data/

|-- Example

|-- GARR

| |-- garr-live

| ‘-- garr-old

‘-- Polito

|-- 2000

| |-- Apr

| |-- Jun

| |-- Jun,post155

| ‘-- May

|-- 2001

| |-- Feb

| ‘-- Jan

|-- 2005

| |-- Apr

| ‘-- Feb

‘-- Current

4.3.2 Web Configuration

The web configuration really depends on your web server configuration. Few dependencies
are required, most notably, the RRD Perl library from the RRDtool installation.
It is advisable to store the Tstat RRD files everywhere you want, and then create a sym-

bolic link named rrd data that points to it (i.e., to the root of the RRD database tree). Simi-
larly for the directorywhere the rendered images should be stored (defaults to cgi-bin/rrd images)
and can be a symbolic link as well. The names of these symbolic links can be redefined in
the configuration section of tstat rrd.cgi if needed:

/ \

/ configuration __________/

__________________/.:nonsns:.

#

specify path to the root of the rrd database tree

by default, I assume there is a symbolic link in cgi-bin/

named rrd_data

$RRD_DATA = ’rrd_data’;

same thing for image directory

in my case, var/www/cgi-bin/rrd_images is

a symbolic link to "/var/www/html/rrd_images";

from the html browser’s perspective

$IMG_DIR = "rrd_images";

5 Runtime Module

This module has been developedwith the specific target to try to control the disk occupation
and to have a minimal interface to execution process to enable/disable some feature without

17

restarting it. In particular, the system controls two specific outputs: the writing of log files
and packet level traces, so is possible to disable the writing of logs (histograms, RRD and all
the others) if they became to bigs, and to dynamically change the set of packet level traces to
collect.
The module works with simple polling system that is it periodically tests if a configura-

tion file, specified with the -T option when Tstat is executed, is changed from the previous
check and in this case, the new configuration replace the previous one.
The configuration file has an ini file syntax:

> cat tstat-conf/runtime.conf

print logs on disk

[log]

histo_engine = 0 # logs created by histogram engine

rrd_engine = 0 # logs created by rrd engine

log_engine = 0 # all files named log_<something>

protocols to dump

[dump]

snap_len = 0 # max num of bytes to dump from ip hdr (included)

0 == all bytes

udp_dns = 0

udp_rtp = 0

udp_rtcp = 0

udp_edk = 0

udp_kad = 0

udp_kadu = 0 # KadU network

udp_okad = 0 # obfuscated kad

udp_gnutella = 0

udp_bittorrent = 0

udp_dc = 0

udp_kazaa = 0

udp_pplive = 0

udp_sopcast = 0

udp_tvants = 0

udp_unknown = 0 # all the udp traffic that the DPI doesn’t recognize

ip_complete = 0 # all the ip traffic (not consider L4 type and if it’s used)

udp_complete = 0 # all the udp traffic

tcp_complete = 0 # all the tcp traffic

The file in composed of the two sections log and dumpwhich indicate which type of log and
dump trace to create. Except for snap len all features are on/off type i.e. 1 and 0 values
are used to enable/disable them. Instead snap len indicate the maximum number of bytes
dump from the input packet starting from IP level included. For example, supposing to have
a simple IP + UDP packet, using snap len = 40 it will be written a packet of 54 bytes

14 (bogus ethernet) + 20 (IP) + 8 (UDP) + 12 (payload)

For UDP traffic it can be specified a set of applications so to have a specific dump trace for
each application of interest. The unknown traffic i.e. the traffic that the Tstat’s DPI is not able
to identify, is placed in a separated trace. For example, using the following configuration

18

udp_rtp = 1

udp_edk = 1

udp_bittorrent = 1

udp_unknown = 1

it’s expected to have 4 traces i.e. three protocols/applications (RTP, eMule, Bittorrent) and
the unknown (for example DNS traffic).
Beside the traces at application level, it’s possible to create three type of aggregated

traces. In particular, udp complete is all the UDP traffic (both applications specific and un-
known), tcp complete is all the TCP traffic, while ip complete refers to all the traffic that
use IP as level 3 without considering the level 4. In other words, ip complete is the ag-
gregation of TCP, UDP and all the other network protocols that use directly IP (ICMP, IPIP,
ESP, ...). The three options are NOT to complementary so it’s possible to enable all of them
contemporary but this obviously means that a TCP/UDP packet it will appear in more than
one trace so particular attention should be taken.
During the runtime execution of Tstat, the configuration file is controlled periodically

looking for changes in the options. In this way, when Tstat is used for online monitoring,
is possible to interact with the dumping module without the need to restart the program.
When a change is identified a new tracesNN output directory is created in the root output
directory to collect all the new traces and is also generated a file called log.txt that indicate
the dump configuration used for that particular dump.

6 DPMI Module

To the experienced DPMI user, it can turn very useful to think of Tstat in terms of a DPMI
consumer, thus suitable for live usage. Basically, two configuration files need to be provided
in this case.

6.1 Tstat Configuration for DPMI

Especially for this purpose, Tstat can be executed without any argument on the command
line, provided that a file named tstat.conf exists in the same path where the tstat com-
mand has been executed. Note that the filename MUST be in this case tstat.conf
In the latter case, argumentswill be read from tstat.conf rather than from the command

line, which makes Web-based execution easier – it just requires the creation of a text file.
Typically, the content of the file will be one of the two following cases. When only the

RRD module need to be turned on, which is specially suitable for the persistent monitoring
of a network link:

-D dpmi.conf -S -R rrd.conf -r data.rrd

Or, in the case where more detailed transport layer logs and histograms are to be generated,
such as for shorter ad-hoc experiment:

-D dpmi.conf -s data

Note that the dpmi.conf filename, which is the object of the next section, is customizable.

19

6.2 DPMI Configuration for Tstat

This file is used by Tstat in order to properly set-up the DPMI library and, possibly, its filters.
There are only two keywords that are interpreted by Tstat, and the whole content of this file
is passed to the DPMI’s createfiler library call. Tstat-keywords are prepended by the
tstat: prefix, to solve any ambiguity, and are related to the type of stream andmeasurement
direction. More specifically,

tstat:(file|(tcp|udp|eth)[:port])

Specify whether a tracefile or a network socket (and in this case, which port) is the
source of DPMI traffic. Note that in the case where a tracefile is used, there is no
real need to specify this, since the format recognition happens automatically; thus,
the tstat:file keyword is provided for completeness. Conversely, options such as
tstat:eth and tstat:tcp:32449 are necessary in order for network sockets to prop-
erly be setup.

tstat:MP:CI

This option is used to define the traffic directionality, specifying what network card
interface (CI) and the measurement point (MP) are related to incoming traffic from ex-
ternal sources. Referring to the DPMI library internals:

CI <-> char nic[8];

MP <-> char mampid[8];

In order to provide a safe fallback or a missing configuration, unless otherwise speci-
fied, the first received frame is assumed to be “incoming”, thus arbitrarily determining the
incoming CI:MP couple.

7 Bayesian Classification of Skype Traffic

The Bayesian framework is configured through a directory (-B command line option) con-
taining several configuration files. A example of configuration is provided under the tstat-conf
directory so please refer to this directory reading this explanation. In the configuration di-
rectory two files have to be placed, named pktsize.conf and avgipg.conf which define
the parameters used by the classification framework to describe the packet size and average
inter-packet gap.
Both files have the same format specified in the example below:

/ \

/ BayesConf __________/

__________________/.:nonsns:.

#

#===

feature name

#---

Known Skype features:

20

PKTSIZE

AVGIPG

#

FEATURE AVGIPG

#

#===

default flags

#---

USE_LOG 1

NORMALIZE 1

AUTO_OTHER 0

#

WINDOW_SIZE 1

CLASS_LEN 250

MIN_THRESHOLD 1e-25

AVG_THRESHOLD -3.5

WIN_THRESHOLD -3

#

#===

class definition

#---

syntax

DISCRETE class P{class}

GAUSSIAN class P{class} mu sigma

GAUSSIAN+ class P{class} N (w1,m1,s1) .. (wN,mN,sN)

#

note: P{class} may be "="

#

GAUSSIAN mode1 = 10 2

GAUSSIAN mode2 = 20 2

GAUSSIAN mode3 = 30 2

GAUSSIAN mode4 = 40 2

GAUSSIAN mode5 = 50 2

GAUSSIAN mode6 = 60 2

The keyword FEATURE is used to specify which type of statistic the configuration file is ref-
ered to. In the example above we are dealing with the average inter-packet gap, and speci-
fying PKTSIZEwe will describe packet size feature.
Each feature then has a set of flags and other options values that can be used to change

the configuration of the NBC engine. Default parameter are strongly suggested, but in case
you want to experiment with different combinations, you can try to change them.

USE LOG:

If set to 1, the function log10() is applied to the probability values instead to use the
actual probability value; this avoids eventual underflow errors when dealing with very
low probabilities.

NORMALIZE:

If set to 1, the beliefs computed are re-normalized in the range 0:1; this option is valid
only if USE LOG is disabled (by default is enabled);

21

WINDOW SIZE:

The number of packets after which recompute beliefs (by default after each packet);

CLASS LEN:

The maximum value assumed by the feature and is used to compute class probability
distribution functions (by default is 0);

MIN THRESHOLD:

A positive small value that replace the value 0 in the computation of beliefs to avoid
underflows because of logarithm function (by default 1e-33);

AVG THRESHOLD:

The static threshold used to compare the maximum computed belief and take the clas-
sification.

WIN THRESHOLD:

A static threshold is used to count the number of individual samples (rather than their
mean) that passes a more restrictive test (indeed the window threshold is greater than
the average threshold).

Important configuration parameters are the “modes” which must be carefully defined.
Modes are the set of p.d.f. that describe the expected distribution of the feature.
Modes may be described as a DISCRETE function, that is a generic distributions, or as a

GAUSSIAN function, that is a gaussian (or a superposition of a gaussian) distribution.
Each mode then is associated with a name and a probability which is used as a weight.

If ’=’ is used instead of a weight specific values, all weight are assumed to be uniform.
The special type GAUSSIAN+may be used to define a mode composed of N different gaus-

sian distributions. Each function is defined by mean and standard deviaton sigma and the
weight of the mixture have to be specified.
Assuming that you have configured both average ipg and packet size feature in a direc-

tory named bayes conf dir the classification engine can be enabled simply specifying the
-B command line option:

using live capture mode

./tstat -l -B <bayes_conf_dir> -N net.conf

using a packet dump trace

./tstat -B <bayes_conf_dir> -N net.conf tracefile.dump

8 Libtstat library

Libtstat is a shared library that can be used by external programs to access to the statistics
and classification features provided by Tstat. As described in the Install section of this docu-
ment, to enable the building of Libtstat library is needed to provide a configure option

./configure --enable-libtstat

22

8.1 Link the Libtstat library

When the library is installed in the system using make install the following messages are
printed on the console

--

Libraries have been installed in:

/usr/local/lib

If you ever happen to want to link against installed libraries

in a given directory, LIBDIR, you must either use libtool, and

specify the full pathname of the library, or use the ‘-LLIBDIR’

flag during linking and do at least one of the following:

- add LIBDIR to the ‘LD_LIBRARY_PATH’ environment variable

during execution

- add LIBDIR to the ‘LD_RUN_PATH’ environment variable

during linking

- use the ‘-Wl,--rpath -Wl,LIBDIR’ linker flag

- have your system administrator add LIBDIR to ‘/etc/ld.so.conf’

See any operating system documentation about shared libraries for

more information, such as the ld(1) and ld.so(8) manual pages.

--

This indicate where the library has been installed and how to link that to some program. The
most simple thing to do, is to use the native libtool support for automake, that is, assuming
that program name is the name of the executable of the tool to generate, it is needed to add
the following lines to Makefile.am of the tool:

program_name_LDADD = -ltstat -lpcap -lpthread -lm

program_name_LDFLAGS = -Wl,--rpath -Wl,<libtstat_dir>

This allow a fined control on the directory where the library has been installed. Anyway, if it
has been installed in a standard library location (as /usr/lib), instead of the previous lines,
it can be added

AC_CHECK_LIB([tstat], [tstat_next_pckt],, AC_MSG_ERROR([missing ’tstat’ library]))

in configure.ac of the current project. This automatically look for the presence of a function
tstat next pckt() in a system library named libtstat. In case of error of error print a message
stopping the configuration process, instead in case of success, are automatically added all the
linking options needed to build the program (see the autotools files in libtstat-demo for a
complete example).

8.2 Libtstat API

Tstat’s elaborations are perfomed starting from the level 3 (IP) so its is input is a simple array
of bytes that contains a packet starting from level 3. This means is the external program that
has to open a trace or read a packet from a network card and to parse all the level 2 headers
just to have a pointer to the IP header. From this point of view, it can be said that Tstat is
simply a wrapper around Libtstat that add only the support to parse a set of level 2 headers.

23

int tstat init (char *config fname)

config fname is a file name containing a set of Tstat options, one for each line

>cat tstat-conf/tstat.conf

#-s outdir # output directory

-N net.all # network config file

#-B bayesdir # directory of the bayes config files

#-d # debug

If NULL is provided, the library use ./tstat.conf as filename.

void tstat new logdir (char *filename, struct timeval *pckt time)

This function has to be called before the process of the first packet and allow to generate
the output directory using this hierarchy:

<filename>.out

|__<pckt_time>.out

int tstat next pckt (struct timeval *pckt time, void *ip hdr, void *last ip byte, int
tlen, ip direction)

This function enable the processing of a new packet. pckt time is the timestamp of the
packet, ip hdr is a pointer to the first ip byte, last ip byte is a pointer to the last ip
byte, and tlen is the number of total bytes (captured). Instead ip direction indicates
if the packet is incoming or outgoing. Possible values :

0: use the address based classification provided by the -N option

1: packet is treated as having internal source and internal destination (local packet)

2: packet is treated as having internal source and external destination (outgoing
packet)

3: packet is treated as having external source and internal destination (incoming
packet)

4: packet is treated as having external source and external destination (external
packet, will be ignored)

tstat report *tstat close (tstat report *report)

This function flush to file all the pending statistics and fill a tstat report structure with
some general results.

void tstat print report (tstat report *report, FILE *file)

This function print a formatted report to file using tstat report data.

24

9 Author Informations

Active authors:

Marco Mellia <mellia@mail.tlc.polito.it>

Dario Rossi <dario.rossi@enst.fr>

Other active authors:

Maurizio Munafo’ <munafo@polito.it>

Alessandro Finamore <finamore@mail.tlc.polito.it>

Other authors:

Andrea Carpani, Luca Muscariello, Dario Bonfiglio, Robert Birke

Other links:

Telecommunication Networks Group (TNG)

DELEN, Politecnico di Torino

http://www.tlc-networks.polito.it

10 Acknowledgment

Many people contributed to the development of Tstat. Tstat would never have seen the
light had not TCPTrace being invented. Many thanks to Shawn Ostermann and to the Ohio
University for their great program.
Many Master and PhD students took part in the development and debugging of Tstat.

Naming all of them would be impossible. We would then like to thank Luca Muscariello for
the entropy generated in the TCP anomalies identification, and Prof. Marco Ajmone Marsan
and Prof. Fabio Neri who gave us the moral and scientific support to continue investing in
Tstat.

11 License

Copyright (c) 2001 Politecnico di Torino. All rights reserved.
This program is free software; you can redistribute it and/or modify it under the terms

of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

25

